Schweißen von Kupfer und Kupferlegierungen

Kupfer und seine Legierungen sind seit fast 6.000 Jahren von großer technischer und gesellschaftlicher Bedeutung. Heute ist Kupfer das Metall der Energiewende, das erneuerbare Systeme antreibt, die Energieeffizienz verbessert und als nachhaltiger Werkstoff unbegrenzt recycelbar ist. Das Schweißen dieses „Werkstoffs der Wahl“ erfordert jedoch spezifische metallurgische Kenntnisse.

Die Grundlagen zu reinem Kupfer

Beim Schweißen von reinem Kupfer ist es unerlässlich, dass das Material sauerstofffrei ist. Zwar wird Cu in der Regel mit Phosphor desoxidiert, doch selbst ein geringer Phosphorgehalt kann die elektrische Leitfähigkeit beeinträchtigen. Für elektrotechnische Teile, die geschweißt werden sollen, sollte daher stattdessen SE-Cu verwendet werden, das mit Elementen wie Lithium oder Bor desoxidiert ist.

Aufgrund seiner hervorragenden Wärmeleitfähigkeit erfordert Kupfer hohe Vorwärmtemperaturen und eine konzentrierte, intensive Wärmezufuhr während des Schweißprozesses. Zusammen mit seinen mehr als 400 Legierungen ist Kupfer das Material der Wahl für viele innovative Entwicklungen im modernen Leben. Dazu gehören kritische Anwendungen in der Industrietechnik, Energietechnik, Architektur sowie der Informations- und Kommunikationstechnologie.

Image
element copper
Interactive Copper Alloy Tree

Copper (Cu) Alloys

Alloying elements give the various alloys higher strength and greater resistance to wear and corrosion. On the other hand, electrical and thermal conductivity are lower, which improves weldability. Down below you see all the different copper alloys. Click on them to see more information about a specific alloy.

Cu Zn Sn Ni Al Mn Si Be Cr Zr Cu ZnBrass Cu Zn + othersSpecial Brass Cu SnTin Bronze Cu Sn ZnGunmetal Cu NiCu-Ni Alloys Cu Ni ZnNickel Silver Cu AlAluminium Bronze Cu MnManganese Bronze Cu BeBeryllium Copper Cu Ni SiLow Alloyed Copper Cu CrLow Alloyed Copper Cu ZrLow Alloyed Copper Non-hardenable Hardenable

Alloy Name

Standards

-

Properties

-

Applications

-

Welding Advice

-

Kupferlegierungsfamilien im internationalen Vergleich:

Die Familie der Kupferlegierungen ist riesig und reicht von Messing und Bronze bis hin zu komplexen Kupfer-Nickel-Legierungen. Da diese Werkstoffe weltweit verwendet werden, sind sie nach verschiedenen internationalen Normen kategorisiert, wie beispielsweise dem europäischen EN-System (mit den Präfixen CW/CC) und dem amerikanischen UNS-System.

Um Ihnen einen aktuellen und umfassenden Überblick über diese Legierungsklassifizierungen und die entsprechenden Schweißzusätze zu geben, haben wir eine detaillierte Datenbank zusammengestellt.

Klassifiziert gemäß DIN CEN/TS 13388 EN-Nummer vs. UNS-Nummer
EN Number Cu (European Standard)

Das europäische Normensystem verwendet das Präfix „CW“ für geschmiedete Legierungen (wie Bleche, Stangen oder Drähte) und das Präfix „CC“ für Gusslegierungen. Darauf folgen drei Ziffern und ein Buchstabe (z. B. „CW004A“ oder „CW008A“).

System CEN/TC 133 – Werkstoffe sowie andere, nicht standardisierte Werkstoffe. Die Nummern wurden jedoch im Voraus so vergeben, dass Verwechslungen mit CEN-Werkstoffen so weit wie möglich vermieden werden. Das bedeutet, dass nicht jede Materialuntergruppe mit der Zahl „1“ beginnt. Beispielsweise beginnen Kupferlegierungen mit 001, verschiedene Kupferlegierungen jedoch mit 100, Kupfer-Aluminium-Legierungen mit 300, Kupfer-Zink-Legierungen mit 500 usw., wie in Tabelle

Materialgruppen Nummernbereiche 
für Artikel
Material 
gruppe 
Kennung 
Nummernkreis 
für Materialien CEN
Kupfer (Cu)  001-999 A 001-049A
001-999 B 050-099B
Cu + max 5% 
Legierungselemente
001-999 C 100-149 °C
001-999 D 150-199 D
Cu + mehr als 5% 
Legierungselemente
001-999 E 200-249 E
001-999 F 250-299 °F
Kupfer-Aluminium 
Legierung (CuAl) 
001-999 G 300-349G
Kupfer-Nickel Legierung (CuNi) 001-999 H 350-399H
Kupfer-Nickel-Zink 
Legierung (CuNiZn)
001-999 J 400-449J
Kupfer-Zinn Legierung (CuSn) 001-999 K 459-499K
Kupfer-Zink Legierung, (CuZn)
binär
001-999 L 500-549L
001-999 M 550-599 Mio.
Kupfer-Zink-Blei
Legierung (CuZnPb)
001-999 N 600-649N
001-999 P 650-699P
Kupfer-Zink Legierung, (CuZn 
Komplex
001-999 R 700-749R
    750-799S
Kupferwerkstoffe, die 
nicht standardisiert sind 
in CEN/TC 133
800-999 ALS* 800-999*
UNS Nummer Cu (Unified Numbering System)

System: Das Unified Numbering System (UNS) ist ein in den USA eingeführtes System. Für Kupfer und Kupferlegierungen wird das Präfix C (für „Kupfer“) verwendet, gefolgt von fünf Ziffern (z. B. C10100 oder C11000).
Unified Numbering System (UNS) Legierungsbezeichnungen
Kupferlegierungsfamilien

  • C100xx-C150xx Kommerziell reines Cu
  • C151xx-C199xx Alterungshärtbar Cu (w/ Cd, Be, Cr, Fe)
  • C2xxxx Cu-Zn Legierung – Messing
  • C3xxxx Cu-Zn-Pb Legierung – Blei (Plumb) Messing
  • C4xxxx Cu-Zn-Sn alloys – Zinnbronzen
  • C5xxxx Cu-Sn and Cu-Sn-Pb Phosphor Bronzelegierung
  • C6xxxx Cu-Al and Cu-Si Bronze
  • C7xxxx Cu-Ni Kupfer Nickel und Cu-Ni-Zn Nickel Silber

Guss-Kupferlegierungsfamilien

  • C800xx-C811xx Kommerziell reiner Cu-Guss
  • C813xx-C828xx 95-99% Kupfer
  • C833xx-C899xx Cu-Zn Legierungen, die enthalten Sn, Pb, Mn, oder Si
  • C9xxxx Other Andere Legierungen, darunter Zinnbronze, Aluminiumbronze, Kupfer-Nickel
European vs American standard
Ausscheidunghärtbare Legierungen
Material EN Nummer UNS Nummer
CuBe2 CW101C C17200
CuCo1NiBe CW103C -
CuCo2Be CW104C C17500
CuCr1 / CuCr1-C CW105C / CC104C C18200 / C181500
CuCr1Zr CW106C C18150
CuFe2P CW107C C19400
CuNi1P CW108C C19000
CuNi1Si CW109C C19010
CuNi2Be CW110C C17510
CuNi2Si CW111C C70260
CuNi3Si1 CW112C C70250
CuZr CW120C C15000
Nicht Ausscheidunghärtbare Legierungen
Material EN Nummer UNS Nummer
CuAG0.1 CW013A C11600
CuMg0.4 CW128C C18665
CuPb1P CW113C C18700
CuSP CW114C C14700
CuSi1 CW115C C65100
CuSi3Mn1 CW116C C65500
CuSn0.15 CW117C C14410
CuTeP CW118C C14500
CuZn0.5 CW119C -

Messing:

Messinglegierungen enthalten Zink (Zn) als primäres Legierungselement und mindestens 50 Prozent Kupfer. Es können auch andere Legierungselemente vorhanden sein. So dürfen beispielsweise bleihaltige Legierungen nicht geschweißt werden, da die Verdampfung von Blei gesundheitsschädlich ist.

Das Lichtbogenschweißen dieser Cu-Zn-Legierungen ist grundsätzlich nicht möglich, da Zink leicht verdampft. Die dabei entstehende konzentrierte Wärme kann zu einer Überhitzung des Schweißbades führen, wodurch der Partialdruck von Zink auf über 1 atm (101,325 kPa) ansteigt. Dies kann zu einer hohen Porosität und somit zu einer Verringerung der Festigkeit der Schweißnaht führen. Außerdem ist es für den Schweißer gefährlich.

Daher ist das Autogenschweißen die einzige empfohlene Methode zum Schweißen von Messing. Als Schweißzusätze haben sich solche mit Aluminium (Al) oder Silizium (Si) bewährt. Das Schweißen sollte mit einem Überschuss an Sauerstoff durchgeführt werden.
 

Image
Brass family tree

Bronze:

Historisch betrachtet ist Bronze ein Sammelbegriff für eine Vielzahl von Kupferlegierungen. 
Technisch gesehen wird der Begriff „Bronze” jedoch ausschließlich für Kupfer-Zinn-Legierungen (CuSn) verwendet.

Kupfer-Zinn-Legierungen gaben der sogenannten Bronzezeit ihren Namen.

In der Metallurgie wird der Begriff heute nur noch in Verbindung mit dem jeweiligen Hauptlegierungselement verwendet. So bezieht er sich beispielsweise auf Antimonbronze, Arsenbronze, Aluminiumbronze, Bleibronze oder Manganbronze. Phosphorbronze ist ebenfalls eine Zinnbronze, jedoch ist der Phosphorgehalt im Metall gering.
Zinnbronzen sind standardisierte Kupfer-Zinn-Legierungen, die aufgrund ihrer unterschiedlichen Anforderungen und Eigenschaften im Wesentlichen in zwei Kategorien unterteilt werden.

  • Knetlegierungen (max. 9 % Zinn) eignen sich für Umformprozesse.
  • Gusslegierungen (9 bis 13 % Zinn) eignen sich für Gießereiarbeiten.
  • Eine Besonderheit sind Glockenbronzen mit einem Zinngehalt von etwa 20 % (maximal 22 %).
     
Image
Bronze family tree Certilas
Metallurgie des Schweißens von Kupfer

Reines Kupfer ist einphasig und kann durch Kaltumformen verfestigt werden. Die meisten Kupferlegierungen sind ebenfalls einphasig, wobei dies von der Menge der Legierungselemente abhängt. Auch sie können kaltverfestigt werden, sofern sie ausreichend duktil sind.
Durch die Zugabe von Elementen wie Cr, Ni, Si, P, Sn, Be oder Co kann Kupfermaterial ausscheidungsgehärtet werden.
Ähnlich wie bei Stahl entsteht bei Kupferwerkstoffen durch die Einwirkung von Wärme zusätzlich zur Schweißzone ein thermisch beeinflusster Bereich, die sogenannte Wärmeeinflusszone.
Die daraus resultierende Kornvergröberung und die Breite dieser Zone hängen von der Höhe der Wärmezufuhr und der Vorwärmtemperatur ab. Bei Werkstoffen mit einem kubisch-flächenzentrierten Gitter (FCC) oder einer β-Struktur (z. B. reines Kupfer) ist das Kornwachstum geringer, da diese Metalle thermisch stabiler sind als Werkstoffe mit einem kubisch-raumzentrierten Gitter (BCC).
Durch Erwärmung und Abkühlung können unerwünschte Mikrostrukturen entstehen.
Anfällig dafür sind folgende Werkstoffe:

  • Werkstoffe mit Verunreinigungen, die niedrigschmelzende Phasen oder versprödende Ausscheidungen bilden,
  • ausscheidungsgehärtete Werkstoffe,
  • Legierungen mit großem Erstarrungsintervall, die nach dem Schweißen kristallgetrennte Bereiche aufweisen.
     
Wirkung von Legierungselementen in Bronze
  • Blei (Pb) (Lead) verbessert die Fließfähigkeit, verringert jedoch die Zugfestigkeit und Duktilität, sodass selbst geringe Mengen schädlich sind, da diese Legierungen bei Hitze spröde werden.
  • Nickel (Ni) erhöht die Zähigkeit unter Beibehaltung der Festigkeit und sorgt dafür, dass die Festigkeit weniger von der Wandstärke des Gussteils abhängt. Nickel macht Gusslegierungen außerdem korrosionsbeständiger.
  • Eisen (Fe)  verbessert in geringen Mengen die Härtbarkeit von Knetlegierungen und erzeugt eine feinere Körnung.
     
Dreikomponentensysteme auf Kupfer-Zinn-Basis
  • Kupfer-Zinn-Zink (Rotmessing) Zinkzusätze sind für Kupfer-Zinn-Gusslegierungen sehr wichtig. Viele dieser Legierungen enthalten Zink als drittes Legierungselement und bilden die Gruppe der Kupfer-Zinn-Zink-Gusslegierungen (Rotmessing).
  • Kupfer-Zinn-Blei (Guss-Zinn-Bleibronzen) Die Gehalte an Blei liegen in den Kupfer-Zinn-Blei-Gusslegierungen meist weit höher als die von Zinn. Festigkeit und Dehnung nehmen durch Bleizusätze über 1,5% geringfügig ab.. 
  • Kupfer-Zinn-Nickel (~Neusilber) Kupfer-Zinn- und Kupfer-Zinn-Zink-Gusslegierungen enthalten mitunter Nickel als Legierungsbestandteil. 
  • Kupfer-Zinn-Phosphor Um eine Desoxidation der Kupfer-Zinn-Schmelze zu erreichen und die Bildung von Zinnoxid zu verhindern, wird Phosphor in geringen Mengen hinzugefügt.
  • Kupfer Aluminium CuAL-Legierungen enthalten Aluminium als Hauptlegierungszusatz (Zweistofflegierungen) und oft weitere Legierungselemente wie Eisen, Nickel, Blei und Mangan (Mehrstofflegierungen)

Zweistofflegierungen sind im Allgemeinen besser schweißgeeignet als Mehrstofflegierungen.    

Verbindungsschweißen von Kupferlegierungen

Schweißtechnisch relevante Werkstoffeigenschaften.

Kupferwerkstoffe sind unter Berücksichtigung der physikalischen Eigenschaften ebenso gut schweißbar wie Stahlwerkstoffe. Nachteilig ist jedoch die generelle Neigung der NE-Metalle zur Aufnahme atmosphärischer Gase beim Schweißen. Dadurch verschlechtern sich die mechanisch-technologischen Gütewerte der Schweißnaht. Deshalb müssen alle Bereiche, in denen während des Schweißens Temperaturen von mehr als 600 K auftreten, mithilfe inerter Schutzgase (Schmelzschweißverfahren) bzw. anderer geeigneter Maßnahmen (z. B. Beschichtungen bei Widerstandsschweißverfahren) vor Luftzutritt geschützt werden.

Weitere für die schweißtechnische Verarbeitung von Kupfer wichtige Eigenschaften sind die Wärmeleitfähigkeit und die Wärmeausdehnung. Im Vergleich zu unlegiertem Stahl hat reines Kupfer

  • eine ca. 6-fach höhere Wärmeleitfähigkeit bei Raumtemperatur und eine 15-fach höhere bei 1000 °C,
  • eine um den Faktor 1,4 höhere Wärmeausdehnung und
  • eine ca. doppelt so große Schrumpfung beim Erstarren.

Die hohe Wärmeleitfähigkeit führt dazu, dass ein Großteil der eingebrachten Schweißenergie in den umliegenden Grundwerkstoff abgeleitet wird. Die abgeführte Energie steht zum Aufschmelzen des Grundwerkstoffs nicht zur Verfügung.

Image
measuring point preheating welding
Image
measuring point preheating fillet weld
Image
Temperature profile copper vs steel
Besonderheiten bei der schweißtechnischen Verarbeitung von Kupfer und Kupferlegierungen

Für die schweißtechnische Verarbeitung von Kupferwerkstoffen stehen zahlreiche Verfahren zur Verfügung.

Aufgrund der hohen Wärmeleitfähigkeit der unlegierten und niedriglegierten Kupferwerkstoffe sollten entweder Verfahren mit hoher Energiedichte wie das Laser- oder Elektronenstrahlschweißen eingesetzt werden oder die Werkstücke sollten vorgewärmt werden. Die Höhe der Vorwärmtemperatur richtet sich dabei nach der Leitfähigkeit des jeweiligen Werkstoffs und der Größe des Bauteils. Zur Herstellung sauberer und fehlerfreier Schweißnähte sowie zum Schutz der Wurzelseite können Flussmittel verwendet werden. Diese werden vor dem Schweißen auf die Oberfläche des Werkstücks aufgetragen, lösen während der Erwärmung die vorhandenen Oxidschichten und verhindern deren Neubildung. Flussmittel sind in der Regel pastös und bestehen aus Borverbindungen mit Zusätzen von oxidlösenden Metallsalzen.

Für CuAl-Legierungen werden fluoridhaltige Sonderflussmittel verwendet.

 

Sie werden bei den konventionellen Schmelzschweißverfahren wie dem Autogen-, dem Lichtbogenhand- und dem WIG-Schweißen verwendet. Beim Gas- und Lichtbogenhandschweißen müssen Flussmittel immer eingesetzt werden. Beim WIG-Schweißen kommen Flussmittel hingegen nur noch selten zum Einsatz und beim MIG-Schweißen gar nicht, obwohl sie für das Schutzgasschweißen allgemein empfohlen werden. Bei Arbeiten mit hohen Vorwärmtemperaturen (ab ca. 300 °C) sollten Flussmittel als Kantenschutz der Schweißflanken eingesetzt werden. Bei mehrlagigen Schweißungen (Blechdicke > 10 mm) ist es vorteilhaft, auch die Zusatzwerkstoffe dünn mit Flussmittel zu bestreichen.
Die oberflächenreinigende Wirkung der Flussmittel kann durch den Einsatz des Lichtbogens verstärkt oder sogar ersetzt werden. Beim Schweißen von aluminiumhaltigen Kupferlegierungen wird durch das Anlegen der Elektrode an den Pluspol eine Reinigung der Oberfläche von den dichten, fest haftenden Al-Oxidschichten erzielt. Die Elektrode wird bei dieser Technik durch die hohe Geschwindigkeit der auftreffenden Elektronen stark thermisch belastet, weshalb meist Wechselstrom verwendet wird. Durch die negativen Stromanteile sinkt die thermische Belastung der Elektrode, während die gewünschte Reinigungswirkung in den positiven Phasen eintritt.

Mögliche Schweißverbindungen

Reines Kupfer mit Kupferlegierungen

Beim Schweißen von Kupfer mit Kupferlegierungen müssen die Unterschiede in den Festigkeitseigenschaften bei erhöhten Temperaturen sowie in den physikalischen Eigenschaften (Wärmeleitfähigkeit, Ausdehnung, Schmelzwärme und Schmelztemperatur) berücksichtigt werden. Für einige technisch bedeutende Materialkombinationen sind Empfehlungen in der Tabelle aufgeführt.
 

Material 1 Material 2 Schweißprozess Zusatzwerkstoff Bemerkung
Kupfer CuSi2Mn, CuSi3Mn TIG / MIG CEWELD CuSi3 ab > 10 mm Blechdicke vorwärmen der Cu Seite (300 -400°C)
Kupfer CuZn-Legierung TIG / MIG
TIG / MIG
CEWELD CuSn6
CEWELD CuSn
Je nach Wandstärke Cu-Seite vorwärmen (200 -500°C)
 
Kupfer CuSn-Legierung TIG / MIG CEWELD CuSn6  
Kupfer CuNi-Legierung TIG / MIG CEWELD CuNi30Fe  
Kupfer CuAl-Legierung TIG / MIG
TIG / MIG
CEWELD CuSn6
CEWELD CuAl8Ni2
 
Reines Kupfer und Kupferlegierungen in Verbindung mit Stahl.

Die Puffertechnik muss angewendet werden. Das Puffern kann entweder auf der Kupfer- oder auf der Stahlseite erfolgen. Verwenden Sie in beiden Fällen eine reine Nickelelektrode. Für die endgültige Verschweißung der Verbindung verwenden Sie entweder Elektroden vom Typ Inconel oder Bronze Typen, je nachdem, auf welcher Seite die Pufferschicht aufgebracht wurde. Puffern mit CEWELD E NiTi3 / NiCro 600
 

Material 1 Material 2 Belastung Schweißprozess Zusatzwerkstoff Bemerkung
Kupfer Unlegierter Stahl Untergeordnet TIG / MIG
TIG / MIG
TIG / MIG
CEWELD CuSn6
CEWELD CuAl8
CEWELD CuNi30Fe
Cu-Seite auf ca. 200–500 °C vorwärmen
Kupfer

Unlegierter Stahl 

oder Austenitic

hoch TIG / MIG
TIG / MIG
CEWELD NiTi3
CEWELD Nicro600
Cu Seite mit Tig und NiTi3 oder Nicro600 Puffern, 
Vorwärmung ca. 200 - 300 °C  ohne
Vorwärmung schweißen mit Nicro600
CuMn2 Unlegierter Stahl - TIG / MIG
TIG / MIG
TIG / MIG
CEWELD CuSn6
CEWELD CuAl8
CEWELD CuAl8Ni2
Stahlseite mit MIG- Impuls und CuSn- oder 
CuAl- Zusatz puffern; Verbindungsschweißung mit 
CuSn oder CuAl Zusatzwerkstoff.
CuZn-Legierung Unlegierter Stahl - TIG / MIG
TIG / MIG
CEWELD CuSn6
CEWELD CuAl8
Stahlseite mit MIG- Impuls und CuSn- oder 
CuAl- Zusatz puffern; Verbindungsschweißung mit 
CuSn oder CuAl Zusatzwerkstoff.
CUSn-Legierung Unlegierter Stahl - TIG / MIG
TIG / MIG
CEWELD CuSn
CEWELD CuSn6

Stahlseite mit MIG- Impuls und CuSn6P Puffer; 

Verbindungsschweißung CuSn6P oder CuSn1

CuNi-Legierung Unlegierter Stahl - TIG / MIG CEWELD NiCu30Mn Puffern der Stahlseite mit NiCu Zusatz für 
MAG und  TIG
CuAl-Legierung Unlegierter Stahl - TIG / MIG
TIG / MIG
CEWELD CuAl8
CEWELD CuAl8Ni2
Stahlseite mit MIG- Impuls und CuAl 
Schweißzusatz puffern
Reines Kupfer mit Gusseisen

Diese ungewöhnliche Kombination ist problematisch, da Gusseisen einen hohen Schwefel- und Phosphorgehalt aufweist. Diese Stoffe können mit Kupfer reagieren. Aus diesem Grund wird dringend empfohlen, die Gusseisenseite zu puffern. Zum Beispiel mit CEWELD NiFe 60-40

Reines Kupfer sowie Nickel und seine Legierungen.

Die meisten Ni-basierten Legierungen sind empfindlich. Selbst Monel könnte unter besonders ungünstigen Temperatur- und Spannungsbedingungen empfindlich reagieren. In diesem speziellen Fall handelt es sich wahrscheinlich um Heißrisse, die mit Kupfer gefüllt würden, ähnlich wie bei der eutektischen Heilung. Die geringere Festigkeit der Kupferphase verringert auch die Festigkeit der gesamten Verbindung.

Um solche Probleme zu vermeiden, sollten Sie die Puffertechnik verwenden. Tragen Sie die Pufferschicht auf die Kupferseite auf. Die endgültige Schweißung sollte dann mit einer für das andere Material geeigneten Elektrode durchgeführt werden.
CEWELD E NiTi3 / NiCro 600
 

Messing mit Legierungen auf Fe- und Ni-Basis, reinem Kupfer oder Kupfer-Nickel

Für diese Kombinationen wird das Lichtbogenschweißen nicht empfohlen. Als vorübergehende Lösung können Al-Bronze- oder Si-Bronze-Elektroden verwendet werden. Trotz größter Sorgfalt können sich beim Schweißen spröde Strukturen im Schweißgut bilden. Hinzu kommen das bereits erwähnte Problem der Porosität und die Gefahr für den Schweißer.
Daher ist es besser, Autogenschweißen oder Hartlöten zu verwenden.

Kupfer-Zinn (Sn)-Bronze mit Stahl

Beim direkten Schweißen von Sn-Bronze auf Stahl mit Stumpf- oder Kehlnähten besteht die Gefahr einer unvollständigen Verschmelzung. Abgesehen von der Kupferpenetration verringert dies die Festigkeit der Verbindung. Dies kann vermieden werden, indem die Stahlseite mit einer Bronzeschicht bestrichen und dann mit derselben Elektrode an die Bronzeseite geschweißt wird. Eine weitere Möglichkeit ist, die Bronzeseite mit einer Nickelelektrode zu bestreichen, wenn eine Kupferpenetration nicht zulässig ist.

Bronze mit reinem Kupfer

Bei dieser Kombination ist es wichtig, dass der Legierungsgehalt des Schweißguts während des Schweißens nicht zu stark durch das flüssige Kupfer verdünnt wird. Denn das Risiko von Rissbildung steigt mit sinkendem Legierungsgehalt.
In dieser Hinsicht sind Sn-Bronze-, Si-Bronze- und insbesondere Al-Bronze-Elektroden zufriedenstellend.
 

Bronze zu Messing

Das Autogenschweißen ist für diese Kombination das bevorzugte Verfahren. In den meisten Fällen lassen sich jedoch mit sorgfältigen Schweißtechniken – wie der Minimierung der Wärmezufuhr und der Vermeidung lokaler Wärmekonzentrationen – akzeptable Ergebnisse erzielen. Diese Methode liefert zumindest weitaus bessere Ergebnisse als das Schweißen von reinen Messingverbindungen.

Al-Bronze oder Si-Bronze mit Stahl

Bronzeelektroden können in Konstruktionen verwendet werden, die nur geringen statischen Belastungen und nicht zu hohen Temperaturen ausgesetzt sind. In der Regel wird die Stahlseite mit einer Bronzeschicht beschichtet und mit der Bronzeseite unter Verwendung derselben Elektrode verschweißt. Andernfalls muss auf die Bronzeseite eine Nickel-Isolierschicht aufgebracht werden.

Al-Bronze oder Si-Bronze mit Sn-Bronze

Die meisten Bronzeelektroden eignen sich gut zum Schweißen dieser Materialkombination. Al-Bronze-Verbrauchsmaterialien weisen die beste Toleranz gegenüber Verdünnung auf, Sn-Bronze ist in dieser Hinsicht hingegen am empfindlichsten.

Kupfer-Nickel zu Stahl

Für diese Kombination werden bevorzugt CuNi 70/30-Elektroden verwendet. Es können auch Monel-Typen verwendet werden. Beim Schweißen von Kupfer-Nickel mit Edelstahl muss die Buttertechnik zusammen mit Einsätzen, das heißt einem Zwischenstück aus ferritischem Stahl oder Monel, angewendet werden, gefolgt von einer beidseitigen Verbindung. Die Verbindung zwischen Kupfer-Nickel und Stahleinsatz kann mit CuNi- oder Monel-Elektroden hergestellt werden.

Kupfer-Nickel mit Inconel oder Nimonic oder Hastolly B oder C oder Monell

Zum direkten Schweißen dieser Verbindung können Verbrauchsmaterialien vom Typ Monel verwendet werden. Die sicherste Methode besteht jedoch darin, die Kupfer-Nickel-Seite mit Monel zu beschichten und sie dann mit Inconel-Typen an die andere Seite zu schweißen. So wird vermieden, dass sich zu viel Chrom (Cr) und Eisen (Fe) mit dem Monel-Schweißgut vermischen, was sonst zu Rissen führen könnte.

Kupfer-Nickel zu Gusseisen

Für diese ungewöhnliche Kombination ist eine Puffertechnik notwendig.

Kupfer-Nickel zu reinem Kupfer

Die besten Schweißergebnisse werden mit Verbrauchsmaterialien vom Typ Cu-30 % Ni erzielt. Auch Sn-Bronze-Elektroden liefern recht sichere Schweißergebnisse.

Kupfer-Nickel zu Sn-Bronze

This weid can be performed with Sn-bronze electrodes. CEWELD E ZIBRO / CuSn

Kupfer-Nickel zu Al-Bronze oder Si-Bronze

This combination may occur, for instance, in shipbuilding, and it can be successfully welded using the 'buttering' technique. First, the copper-nickel side should be coated with Sn-bronze, and then it can be welded to the bronze side using either Al- or Si-bronze electrodes.